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1 Introduction

Domingos et. al demonstrates a relation between the similarity of training data
samples and the inference point over the history of the changes of parameters
for any model learned by gradient descent[2].

Assuming a model f(x;ω), parametrized by weights ω and taking input x,
they arrive at the following interesting result:

lim
ϵ→0

y = y0 −
∫
c(t)

m∑
i=1

L′(y∗i , yi)∇⃗ωf(x⃗; ω⃗(t)) · ∇⃗ωf(x⃗i; ω⃗(t))dt (1)

Figure 1: Original visual figure of the path kernel and the similarity from [2].
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What this suggests is that no matter where our model starts (y0), the move-
ment towards the trained model can be approximated as a sum of terms weighted
by the similarity between the gradient of the inference point x⃗ and the training
data point. This suggests that for a smooth enough parameter space, that the
strongest contributing terms in the sum are the ones where the vector x⃗ are
closest. Intuitively, this is because we can assume some correlation of gradients
for neighboring points but no correlation (i.e. random) for other points.

2 The Open Question

The current scheme uses gradient flows [1] and requires that the learning rate ϵ
be very small. When training, I believe it may be an open question whether this
approximation holds. In particular, it assumes we are not in a local minimum.
Being in a local minimum would require us to jump over a max (and reach a
point where ϵ = 0).

They mention[2]:

This is standard in the analysis of gradient descent, and is also gen-
erally a good approximation in practice, since the learning rate has
to be quite small in order to avoid divergence (e.g., ϵ = 10−3) [3].
Nevertheless, it remains an open question to what extent models
learned by gradient descent can still be approximated by kernel ma-
chines outside of this regime.

Intuitively this makes a bit of sense. Practically, we observe this with basic
LLMs where when giving a very simple prompt asking solve a math specific
question with the prefix “You are an MIT student” leads to a higher likelihood
better answer than without.

This document aims to discuss what happens when we are outside of this
regime. How is this approximation affected? To what extent does it still hold?

3 Discrete Proof

Before we may discuss the limits, we must derive a discrete version of the original
proof [2]. We will also find that the key insight that is needed to prove this is
that we assume the model can be approximated by a hyperplane (i.e. can be
Taylor expanded keeping up to first order derviative terms).

When we undergo gradient descent, we are more or less updating our weights
according to a rule:

ω⃗n+1 = ω⃗n − αn+1∇⃗L(ω⃗n) (2)

where αn+1 is the learning rate, ω⃗n the weights at timestep n and L the loss.
Note that the loss is implicity dependent upon the training samples (xi, y

∗
i ).

We can as in [2] rewrite the gradient of the total loss in terms of a sum over
individual gradient losses with respect to the input:
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∇⃗L(ω⃗n) =
∑
j

∂L

∂ωj
(ω⃗n)ω̂j

=
∑
j,m

∂L

∂ym

∂ym
∂ωj

(ω⃗n)ω̂j

=
∑
m

∂L

∂ym
∇⃗ωf(x⃗m; ω⃗n)

where we sum over m training data points with ym = f(x⃗m; ω⃗n). Finally,
we have:

ω⃗n+1 − ω⃗n = −αn+1

∑
m

∂L

∂ym
∇⃗ωf(x⃗m; ω⃗n) (3)

The change of the model at each timestep is:

∆f = f(x⃗; ω⃗n+1)− f(x⃗; ω⃗n) (4)

We can rewrite f as a Tayor series, centered at ω⃗n:

f(x⃗; ω⃗n+1) = f(x⃗; ω⃗n) + ∇⃗ωf(ω⃗n) · (ω⃗n+1 − ω⃗n) +O(|ω|2) (5)

The key step here is to assume that our function can be approximated by a
hyperplane. We can then ignore the O(|ω|2) terms.

If this is true, then we can write the delta as:

∆f = f(x⃗; ω⃗n+1)− f(x⃗; ω⃗n)

= f(x⃗; ω⃗n)− ∇⃗ωf · (ω⃗n+1 − ω⃗n)− f(x⃗; ω⃗n)

= ∇⃗ωf · (ω⃗n+1 − ω⃗n)

If we then replace ω⃗n+1 − ω⃗n with Equation 3, we get:

∆f = −αn+1∇⃗ωf(x⃗) ·
∑
m

∂L

∂ym
∇⃗ωf(x⃗m; ω⃗n) (6)

= −αn+1

∑
m

∂L

∂ym
∇⃗ωf(x⃗; ω⃗n) · ∇⃗ωf(x⃗m; ω⃗n) (7)

Finally, the final model will just be the sum of the ∆s plus the initial model:

f(x⃗; ω⃗N ) = f(x⃗; ω⃗0) +

N−1∑
k=0

−αk+1

∑
m

∂L

∂ym
∇⃗ωf(x⃗; ω⃗k) · ∇⃗ωf(x⃗m; ω⃗k)
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and we end with:

f(x⃗; ω⃗N ) = f(x⃗; ω⃗0)+
N−1∑
k=0

−αk+1

∑
m

L′(y∗i , yi)∇⃗ωf(x⃗; ω⃗k) · ∇⃗ωf(x⃗m; ω⃗k)
(8)

which is the discrete version of Equation 1. Note that this is a similar result,
except that we find that the learning rate can be variable so long as the function
can locally be approximated by a hyperplane.

4 Discussion

Not Quite Kernel Machine With Local Minima (But Still Approxi-
mate?)

Equation 8 demonstrates to us that we need simply assume the method is
locally approximated by a hyperplane at each time step.

We can quickly see this breaks down when this is not true. When can
this happen? This can happen where the slope of the approximate hyperplane
is negligible and we must keep higher order terms. This could happen if we
happen to be in a local minima or saddle point. In one dimension, this is easy
to visualize.

Figure 2: Example of one iteration of gradient descent where the local minima
is not the global minima. The only way to get past this minimal is to move
to a regime where we hit zero slope, and thus the higher order terms must be
included.

See Figure 2. The only way to get to the global minima is to move a ∆ω⃗
where f cannot be approximated by the first order terms in ω. In this case,
it means we must account for additional terms. Roughly, we can simply not
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ignore the Taylor approximation. Let us group the complex timesteps into Tc.
We see we have a sum like:

f(x⃗; ω⃗N ) = f(x⃗; ω⃗0) +
N−1∑
k=0

−αk+1

∑
m

L′(y∗i , yi)∇⃗ωf(x⃗; ω⃗k) · ∇⃗ωf(x⃗m; ω⃗k)

+
∑

ωk∈Tc

+O(|ωk+1 − ωk|2) (9)

Whether this terms contributes or not is an open question, and something
that will have to be empirically determined. Roughly, I think it’s likely related
to ratio of local minima encountered to total steps. Training usually involves
some sort of regularization which attempts to smooth the space. I would expect
this ratio to be small, and likely there to be little contribution.

Kernel Machine When Initialized
Note that a simple solution to this problem would be to simply initialize

parameters close to the global minimum. However, this weakens the kernel
machines argument. Gradient descent is only a kernel machine if we started
near the solution.

5 Follow Up

Janko-dev’s notebook demonstrates this empirically. It is possible by tweak-
ing the paths and ensuring we’re in a local minimum, we may see if we have
agreement or not, and how big the O(|ω|2) terms are.
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https://nbviewer.org/github/Janko-dev/path_kernel_machine/blob/main/path_kernel_machine.ipynb
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